

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 4373-4376

Tetrahedron Letters

Fluoride sensing with a PCT-based calix[4]arene

Suh Hyun Lee,^a Hyun Jung Kim,^a Yeon Ok Lee,^a Jacques Vicens^b and Jong Seung Kim^{a,*}

^aDepartment of Chemistry, Institute of Nanosensor and Biotechnology, Dankook University, Seoul 140-714, Republic of Korea ^bLaboratoire de conception moléculaire, associé au CNRS, LC4, ECPM-ULP, Strasbourg, France

> Received 23 March 2006; revised 17 April 2006; accepted 20 April 2006 Available online 12 May 2006

Abstract—Novel calix[4]arene-based anion sensor 1 with two coumarin units attached via amido functions acting also as binding sites is presented. Complexation of F^- by PCT-based 1 causes selectively red-shift in UV–vis absorption and in fluorescence emission due to H-bonding followed by deprotonation of NH-amide groups. © 2006 Elsevier Ltd. All rights reserved.

With the concepts provided by supramolecular chemistry, anion sensing has recently arisen as a place of choice in the research field devoted to the detection of given species.¹ This rapid growth is coming from the realization of the diverse roles played by anions in biological and chemical systems.² High sensitive and simple tools are demanded for detection of anions. Fluorescent chemosensors are effectively used to analyze and measure their presence in living systems and intensive research has been devoted regarding anion selective receptors using the fluorescent change as a means of detection.³ Among the biologically functional anions, peculiar interest is given to fluoride (F^-) as one with a specific importance because of its role in dental care and treatment of osteoporosis.⁴

Artificial anion receptors are generally composed of binding sites and of covalently linked signaling units. Anion binding sites include not only positively charged moieties such as guanidinium or ammonium based on electrostatic interactions,² but also neutral groups such as (thio)ureas, calix[4]pyrroles, porphyrins or amides acting by the formation of hydrogen bonds.^{5,6} Particularly, amide NH function is known to form a strong H-bonding interaction with anions.² Calixarenes have been found to achieve high selectivity and binding efficiency for both cations and anions.⁷ As a signaling mechanism, most anion chemosensors developed to date utilize internal charge transfer in the ground state for colorimetric chemosensors and PET (photoinduced electron transfer),⁸ PCT (photoinduced charge transfer)⁹ and excimer/exciplex formation¹⁰ for fluorescent chemosensors.

Although the PCT has been widely exploited for cation sensing, there are few examples of such chemosensors based on calix[4]arene for anions. With respect to F^- detection, we recently reported a calixarene with two fluorogenic pyrene units acting as a fluoride-selective PCT chemosensor based on formation of a static pyrene excimer.^{7d} We now report on a novel PCT-based chemosensor 1. Compound 1 consists of a calix[4]arene with two coumarin units¹¹ and showed a unique feature in the absorption and emission spectra in the presence of F^- . Its anion complexation behavior was compared to 2.

As shown in Scheme 1, **1** was prepared in 54% yield by reacting calix[4]arene with 2 equiv of coumarin derivative 3^{12} in the presence of K₂CO₃ as a base and a catalytic amount of NaI in refluxing CH₃CN.¹² The cone conformation of **1** was deduced from the characteristic AB pattern for the ArCH₂Ar in its ¹H NMR spectrum in CDCl₃. A peak at 31.8 ppm was found in the ¹³C NMR for the ArCH₂Ar. Reference molecule **2** was synthesized by a similar procedure but using Cs₂CO₃.¹² The 1,3-alternate conformation of **2** was deduced from its ¹H NMR spectrum exhibiting an AB system appearing partially at 3.81 ppm (J = 8.0 Hz) for the ArCH₂Ar and from ¹³C NMR showing a peak at 37.85 ppm for the related carbon.

Calixarenes 1 and 2 bearing two coumarin signaling units and two amido groups as the binding sites were

^{*} Corresponding author. Tel.: +82 2 799 1351; fax: +82 797 3277; e-mail: jongskim@dankook.ac.kr

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.04.093

Scheme 1. Synthetic routes for 1 and 2. (i) 3, K_2CO_3 , NaI, CH_3CN , N₂.

anticipated to act as a PCT-based chemosensor. Figure 1 shows the changes of the absorption spectrum of 1 (20 μ M in CH₃CN) upon addition of F⁻, Cl⁻, Br⁻, I⁻, CH₃CO₂⁻, HSO₄⁻, and H₂PO₄⁻ (60 mM as their tetrabutylammonium salts). Only F⁻ and CH₃CO₂⁻ showed changes over the anions. Free ligand 1 displayed a strong absorption band at 335 nm corresponding to the coumarins. Titration of 1 as a function of [F⁻] (shown in Fig. 2) gave a decreasing intensity with the formation of red-shifted band at 349 nm. Another new band at 408 nm appeared. Both new bands were attributed to H-bonding between amide N–H and F⁻ followed by deprotonation.

The study of the luminescence of **1** evidenced a similar F-selectivity over the other anions. As shown in Figure 3, **1** showed a unique emission band at 420 nm with excitation at $\lambda_{ex} = 335$ nm which declined upon addition of F⁻ eventually quenched to give a small band

Figure 1. Uv-vis spectra of 1 ($20 \ \mu$ M) upon addition of tetrabutylammonium salts of F⁻, Cl⁻, Br⁻, I⁻, CH₃CO₂⁻, HSO₄⁻, and H₂PO₄⁻ (60 mM) in CH₃CN.

Figure 2. Changes in UV–vis spectra for 1 ($20 \mu M$) in CH₃CN upon addition of tetrabutylammonium fluoride.

Figure 3. Fluorescence spectra of **1** (6 μ M): (a) $\lambda_{ex} = 335$ nm; (b) $\lambda_{ex} = 408$ nm upon addition of tetrabutylammonium salts of F⁻, Cl⁻, Br⁻, I⁻, CH₃CO⁻₇, HSO⁻₄, and H₂PO⁻₄ (6.0 mM) in CH₃CN.

at 508 nm. This was ascribed to a PET effect from the F^- to coumarin.^{7d} When excited at $\lambda_{ex} = 408$ nm, a red-shifted absorption band upon addition of F^- , the fluorescence intensity of 1 was enhanced compared to those of other anions.

The titration of 1 (6.0 μ M in MeCN) by F⁻ with an excitation at $\lambda_{ex} = 335$ nm exhibited a decrease of its emission intensity with a red-shift to 508 nm which is induced by H-bonding followed by deprotonation (Fig. 4). From this titration, we determined association constants (K_a)¹³ of 1 for F⁻ (1.08 × 10⁴) and for CH₃CO₂⁻ (3.77 × 10²) due to their basicity and to a recognition complementarity.

¹H NMR was used to look into the nature of the peaks formed during luminescent F⁻ titration. Figure 5 shows the chemical shift changes of the ¹H NMR spectrum of **1**

Figure 4. Fluorescence titration spectra of 1 (6.0 μ M) with tetrabutylammonium fluoride in CH₃CN, $\lambda_{ex} = 335$ nm.

Figure 5. Partial ¹H NMR (200 MHz) of 1 (0.03 mM) in CDCl₃: (a) 1 only; (b) 1 + 1.0 equiv of tetrabutylammonium fluoride. *x*-axis is for ppm.

upon addition of 1.0 equiv of F^- in CDCl₃. The amide H_a proton disappeared with no particular changes in the aromatic proton signals. As a result, we estimated that the amide N–H of 1 participates in the H-bonding with F^- . Similarly, OH protons are high-field shifted with probable H-bonding with F^- .

The interaction of amide hydrogen atoms with F^- promotes the delocalization of π -electrons from the anionic nitrogen atoms to the coumarin units provoking a change of the π - π transition of the chromophore to green, as shown in Figure 6.

Compound 2 fully O-substituted was investigated to compare with 1. As shown in Figure 7, the fluorescence

Figure 6. Visual changes for **1** upon addition of (a) no anion, (b) F^- , (c) Cl⁻, (d) Br⁻, (e) I⁻, (f) CH₃COO⁻, (g) HSO₄⁻, and (h) H₂PO₄⁻. Irradiation at $\lambda_{ex} = 335$ nm using UV lamp.

Figure 7. Fluorescence spectra of 2 (6 μ M) $\lambda_{ex} = 335$ nm upon addition of tetrabutylammonium salts of F⁻, Cl⁻, Br⁻, I⁻, CH₃CO₂⁻, HSO₄⁻, and H₂PO₄⁻ (6.0 mM) in CH₃CN.

changes of **2** upon addition of F^- is more significant than that of **1**, in which there is a meaningful red-shifted emission band for $1 \cdot F^-$. Concerning the luminescence mechanism, it is reasonable to postulate that when **1** coordinates F^- , both PETs of (i) fluoride to coumarin and of (ii) phenolate anion to coumarin are applied leading to a remarkable quenching of the fluorescence intensity. For **2** only PET^{7d} (i) might be applied. We also noticed that **2** was selective not only for F^- but also for CH₃CO₂⁻ and H₂PO₄⁻. Presumably **2** presents a larger distance between the amide functions (due to the 1,3alternate conformation) so that anions with larger size such as CH₃CO₂⁻ and H₂PO₄⁻ can be maintained within them.

In summary, we have presented a new anion PCTchemosensor based on calix[4]arene bearing two coumarin units selective for F^- over other anions examined as Cl^- , Br^- , I^- , HSO_4^- , $CH_3CO_2^-$, and $H_2PO_4^-$ and may be considered as a potential fluorescent chemosensor for F^- .⁷

References and notes

- (a) Chemosensors of Ion and Molecule Recognition; Desvergne, J. P., Czarnik, A. W., Eds. NATO ASI series; Kluwer Academic: Dordrecht, 1997; (b) de Silva, A. P.; Gunaratne, H. Q.; Gunnlaugsson, N. T. A.; Huxley, T. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515; (c) Martínez-Máñez, R.; Sancanón, F. Chem. Rev. 2003, 103, 4419; (d) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486; (e) Snowden, T. S.; Anslyn, E. V. Chem. Biol. 1999, 3, 740; (f) Antonisse, M. M. G.; Reinhoudt, D. N. Chem. Commun. 1998, 143; (g) Bühlmann, P.; Prescht, E.; Bakker, E. Chem. Rev. 1998, 98, 1593; (h) Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609.
- (a) Supramolecular Chemistry of Anions; Bianchi, A., Bowman, J. K., Garcia-Espana, E., Eds.; Wiley-VCH: New York, 1997; (b) Prodi, L.; Montalti, M.; Zaccheroni, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. Tetrahedron Lett. 2001, 42, 2941; (c) Rurack, K.; Kollmannsberger, M.; Resch-Genger, U.; Daub, J. J. Am. Chem. Soc. 2000, 122, 968.
- (a) Ojida, A.; Mito-oka, Y.; Sada, K.; Hamachi, I. J. Am. Chem. Soc. 2004, 126, 2454; (b) Kwon, J. Y.; Singh, N. J.; Kim, H.; Kim, S. K.; Kim, K. S.; Yoon, J. J. Am. Chem. Soc. 2004, 126, 8892; (c) Cho, E. J.; Moon, J. W.; Ko, S. W.;

Lee, J. Y.; Kim, S. K.; Yoon, J.; Nam, K. C. J. Am. Chem. Soc. 2003, 125, 12376; (d) Ojida, A.; Inoue, M.; Mito-oka, Y.; Hamachi, I. J. Am. Chem. Soc. 2003, 125, 10184; (e) Gunnlaugsson, T.; Davis, A. P.; O'Brien, J. E.; Glynn, M. Org. Lett. 2002, 4, 2449; (f) Wu, F.-Y.; Li, Z.; Wen, Z.-C.; Zhou, N.; Zhao, Y.-F.; Jiang, Y.-B. Org. Lett. 2002, 4, 3203; (g) Causey, C. P.; Allen, W. E. J. Org. Chem. 2002, 67, 5963; (h) Tang, X.; Dmochowski, I. J. Org. Lett. 2005, 7, 279; (i) Ono, A.; Togashi, H. Angew. Chem., Int. Ed. 2004, 43, 4300.

- The importance of fluoride detection has recently been pointed out in (a) Lin, Z. H.; Ou, S. I.; Duan, C. Y.; Zhang, B. G.; Bai, Z. P. Chem. Commun. 2006, 624; See also: Kirk, K. L. Biochemistry of the Halogens and Inorganic Halides; Plenum Press: New York, 1991; p 58; (b) Kleerekoper, M. Endocrinol. Metab. Clin. North Am. 1998, 27, 441; (c) Beer, P. D. Acc. Chem. Res. 1998, 31, 71.
- (a) Choi, K.; Hamilton, A. D. Coord. Chem. Rev. 2003, 240, 101; (b) Antonisse, M. M. G.; Reinhoudt, D. N. Chem. Commun. 1998, 443.
- (a) Bondy, C. R.; Loeb, S. J. Coord. Chem. Rev. 2003, 240, 77;
 (b) Amendola, V.; Fabbrizzi, L.; Mangano, C.; Pallavicini, P.; Poggi, A.; Taglietti, A. Coord. Chem. Rev. 2001, 219, 821;
 (c) Kim, J. S.; Shon, O. J.; Ko, J. W.; Cho, M. H.; Yu, I. Y.; Vicens, J. J. Org. Chem. 2000, 65, 2386;
 (d) Kim, J. S.; Lee, W. K.; No, K.; Asfari, Z.; Vicens, J. Tetrahedron Lett. 2000, 41, 3345.
- (a) Beer, P. D.; Timoshenko, V.; Passaniti, P.; Balzani, V. J. Chem. Soc., Chem. Commun. 1995, 1755; (b) Miao, R.; Zheng, Q.-Y.; Chen, C.-F.; Huang, Z.-T. Tetrahedron Lett. 2004, 45, 4959; (c) Beer, P. D.; Drew, M. G. B.; Hesek, D.; Shade, M.; Szemes, F. Chem. Commun. 1996, 2161; (d) Kim, S. K.; Bok, J. H.; Bartsch, R. A.; Lee, J. Y.; Kim, J. S. Org. Lett. 2005, 7, 4839; (e) Peng, X.; Wu, Y.; Fan, J.; Tian, M.; Han, K. J. Org. Chem. 2005, 70, 10524.
- (a) Yun, S.; Ihm, H.; Kim, H. G.; Lee, C. W.; Indrajit, B.; Oh, K. S.; Gong, Y. J.; Lee, J. W.; Yoon, J.; Lee, H. C.; Kim, K. S. J. Org. Chem. 2003, 68, 2467; (b) Kim, S. K.; Yoon, J. Chem. Commun. 2002, 770; (c) Liao, J.-H.; Chen, C.-T.; Fang, J.-M. Org. Lett. 2002, 4, 561; (d) Vance, D. H.; Czarnik, A. W. J. Am. Chem. Soc. 1994, 116, 9397.
- 9. Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3.
- Nishizawa, S.; Kato, Y.; Teramae, N. J. Am. Chem. Soc. 1999, 121, 9463.
- 11. 4-Trifluoromethyl-7-coumarin possesses an excited state where the negative charge is transferred from the nitrogen atom to the coumarin ring see: Choi, K.; Hamilton, A. D. *Angew. Chem., Int. Ed.* **2001**, *40*, 3912, and references therein.
- 12. General: Uncorrected melting points (mps), Buchi 500. ¹H NMR and ¹³C NMR, Varian (δ in ppm frpm TMS, J in hertz) FAB MS mass spectra, JEOL-JMS-HX 110A/110A High Resolution Tendem Mass Spectrometry in Korean Basic Science Institute (Korea). All reactions were run under a nitrogen atmosphere. All reagents and solvents were commercial and used without further purification. UV–vis spectra were recorded with a S-3100 UV–vis spectrophotometer. Fluorescence spectra were recorded

with a RF-5301PC spectrofluorophotometer. Experimental conditions are given in the main text. Preparation of 1: Calix[4]arene (0.32 g; 0.79 mmol), 3 (0.44 g; 1.44 mmol), K₂CO₃ (0.11 g, 0.79 mmol), NaI (catalytic amount), and CH₃CN (100 mL) were refluxed for 24 h. After removal of the solvents in vacuo, the resulting solid was dissolved in CH₂Cl₂ (100 mL) and aqueous NaHCO₃ solution (100 mL). The organic phase was washed with water $(2 \times 50 \text{ mL})$. The organic layer was dried over anhydrous $MgSO_4$, filtered, and the solvents were evaporated to give a solid which was recrystallized from Et₂O to give pure 1 (0.36 g; 54% yield) as a white solid. Mp: 230-232 °C. IR (KBr pellet, cm⁻¹): 3322, 1780. ¹H NMR (200 MHz, CDCl₃): 10.45 (s, 2H, CONHcoumarin), 8.17 (s, 2H, ArOH), 7.49-6.75 (m, 8H, ArH, coumarin; 8H, ArH_m; 4H, ArH_p), 4.71 (s, 4H, ArOCH₂CO), 4.22 (d, 4H, ArC H_2 Ar, J = 13.9 Hz), 3.65 (d, 4H, ArC H_2 Ar, J = 13.9 Hz). ¹³C NMR (CDCl₃): 165.7, 158.7, 154.9, 151.3, 149.7, 141.4, 132.4, 130.1, 129.4, 127.5, 121.1, 117.3, 109.8, 106.5, **31.8**. FAB MS m/z (M⁺): Calcd, 962.84. Found: 962.82. Anal. Calcd for C₅₂H₃₆F₆N₂O₁₀: C, 64.87; H, 3.77. Found: C, 64.86; H, 3.79. Preparation of 2: The procedure is the same as for 1 using Cs_2CO_3 . White solid (59% yield). Mp: 280–284 °C. IR (KBr pellet, cm⁻¹): 3322, 1780. ¹H NMR (200 MHz; CDCl₃): 8.77 (s, 2H, CONHcoumarin), 7.66-6.55 (m, 8H, ArH, coumarin; 8H, ArH_m; 4H, ArH_p), 3.87 (s, 4H, ArOCH₂CO), 3.81 (d, 4H, $\operatorname{ArC}H_2\operatorname{Ar}$, J = 8.0 Hz), 3.53–3.43 (m, 4H, ArC $H_2\operatorname{Ar}$; 4H, ArOC $H_2\operatorname{CH}_2$), 1.47 (sextet, 4H, $J = 4.0 \text{ Hz}, \text{ CH}_2\text{CH}_2\text{CH}_3), 0.83 \text{ (t. 6H, } J = 4.0 \text{ Hz}, \text{ CH}_2\text{CH}_2\text{CH}_3).$ $CH_2\text{CH}_2\text{CH}_3).$ ¹³C NMR (CDCl₃): 168.43, 159.07, 157.70, 155.01, 154.53, 141.77, 135.08, 133.05, 131.42, 129.96, 125.87, 123.38, 123.14, 116.75, 109.71, 108.11, 73.04, 71.43, **37.85**, 22.67, 9.97. FAB MS m/z (M⁺): 1047.2. Calcd, 1047.0. Found: Anal. Calcd for C₅₈H₄₈F₆N₂O₁₀: C, 66.53; H, 4.62. Found: C, 66.68; H, 5.40. Preparation of 3: 7-Amino-4-(trifluoromethyl)cou- $(0.30 \text{ g}; 1.29 \text{ mmol}), \text{ClCH}_2\text{COCl}$ marin (0.15 g; 1.29 mmol), NEt₃ (0.40 g; 3.90 mmol), and THF (100 mL) were refluxed for 24 h. After removal of the solvents to the resulting solid was dissolved in CH₂Cl₂ (100 mL) and aqueous NaHCO₃ (100 mL). The organic layer was washed with water $(2 \times 50 \text{ mL})$ and dried over anhydrous MgSO₄. After filtration, the solvents were evaporated to give a solid which was recrystallized from Et_2O to give pure 3 (0.27 g; 68% yield) as a yellow solid. Mp: 182–185 °C. IR (KBr pellet, cm⁻¹): 3322, 1780. FAB $MS m/z (M^+)$: Calcd, 305.64. Found, 305.62. Anal. Calcd for C₁₂H₇ClF₃NO₃: Ć, 47.16; H, 2.31. Found: C, 47.17; H, 2.32. ¹H NMR (200 MHz; CDCl₃): δ 8.47 (s, 1H, CON*H*), 7.88 (s, 1H, ArH), 7.71 (d, 1H, J = 16.0 Hz, ArH), 7.45 (d, 1H, ArH, J = 16.0 Hz.), 6.74 (s, 4H, COCHCCF₃), 4.24 (s. 2H. $COCH_2Cl$).

 (a) Association constants were obtained using the computer program ENZFITTER, available from Elsevier-BIO-SOFT, 68 Hills Road, Cambridge CB2 1LA, United Kingdom; (b) Connors, K. A. *Binding Constants*; Wiley: New York, 1987.